This project will demonstrate the feasibility and benefits of real-time horizon sensing and bit drag and side force measurements on cutting drums of longwall shearsers and continuous mining machines. The sensing technology can also be applied to boring machines, front-end loaders, and drag lines. The application of cutting-edge technology to mining machines will reduce dust exposure to machine operators; enable mining of clean-coal, trona, and potash; minimize waste rock; increase energy-efficient recovery and yield; and enable automation of machines mining metal and nonmetal deposits.

In both surface and underground mines there are barriers beyond which extraction may not occur. In undulating seam deposits, remote sensing can prevent cutting through thin contaminated layers next to the bounding sedimentary rock layer. Because of biological and chemical reactions occurring at the time of peat-coal burial, thin layers of boundary coal contain higher percentages of sulfur, ash, and heavy metal such as mercury. Leaving the boundary layer behind will result in clean-coal mining. Seam boundary contamination also occurs in other mineral deposits. A cutting-edge sensor can reduce the amount of waste rock and increase yield in coal, trona, and potash mining. Real-time sensor signals will enable automated vertical control and not require an operator to be in close proximity to the machine. This reduces dust exposure to mine personnel. Leaving the boundary layer of coal, trona, and potash will improve ground control and prevent roof falls. Monitoring bit forces will optimize bit location on the cutting drum bit for maximum cutting efficiency. All of these benefits contribute to increased productivity and mine safety.
Project Description

Objective: To test remote sensing and imaging technology on the cutting edges of mining equipment to make real-time measurements of mining conditions. Researchers hope to develop a cutting-edge sensor that will improve worker safety by preventing mining into high-pressure water/carbon dioxide cavities, and by allowing greater remote control of equipment while improving the efficiency of mining operations.

Progress and Milestones

Activities to be completed in this project include:

- Install electronic measuring instrumentation and Resonant Microstrip Patch Antenna (RMPA) sensors on cutting drums, rotating arms, and buckets. Instrumentation will achieve Mine Safety and Health Administration flameproof approval for measurement electronics in coal and trona deposits.

- Develop Neural Network Software and algorithm enhancements for the drum sensor application. Modify software as necessary to achieve the desired graphical presentation to machine operating personnel. Graphical enhancements include display of uncut coal thickness, and detection of hazardous conditions ahead of mining (water- and carbon dioxide-filled cavities).

- Conduct in-mine tests for continuous miner, bore miner, and bucket.

PROJECT PARTNERS

- Stolar Horizon, Inc.
 Raton, NM
- Colorado School of Mines
 Golden, CO
- Los Alamos National Laboratory
 Los Alamos, NM
- Mine Safety and Health Administration
 Pittsburgh, PA
- CONSOL, Inc.
 Library, PA
- RAG American Coal, Plateau Mining Corp.
 Price, UT
- FMC Corporation
 Green River, WY
- Lee Ranch Coal Co.
 Grants, NM

FOR ADDITIONAL INFORMATION,
PLEASE CONTACT:

Office of Industrial Technologies
Clearinghouse
Phone: (800) 862-2086
Fax: (360) 586-8303
clearinghouse@ee.doe.gov

Visit our home page at www.oit.doe.gov/mining

Office of Industrial Technologies
Energy Efficiency and Renewable Energy
U.S. Department of Energy
Washington, D.C. 20585

February 2001