Stormwater BMPs: Design and Review/Approval Challenges

> **CAHILL ASSOCIATES** Environmental Consultants West Chester, PA (610) 696 - 4150 <u>www.thcahill.com</u>

Goals and Challenges

- More Widespread Use of BMPs
- Address All Elements of Stormwater:
 - Peak Rate (Municipal Ordinance)
 - Quality
 - Volume and Streambank Protection
 - Infiltration

Challenge

- How to Show Compliance?
- Municipal Review and Approval

 Peak Rate Attenuation
- NPDES Volume

Most Design Engineers and Most Municipal Review Engineers are not Hydrologists -Must Wear Many Hats.

What Have Other States/Cities Done?

- WQ_v Water Quality Volume
- Re_v Recharge Volume
- Cp_v Channel Protection
- Q_p Peak Control (2-year, 10-year)
- Q_f Flood Safe Passage (100 year)

Maryland, Georgia,

What's Happened?

- BMPs for Quality/Recharge added
- Still designing Large Detention Facilities for Peak
- Extended Detention Channel Protection

Design Goals for Calculations

- 1. Mitigate Peak Rates 2-Year to 100-Year
- 2. No Volume Increase for 2-Year Event
- 3. Maintain Groundwater Infiltration

Provide Calculations for Municipal Approval

Eroded Streambanks...

Bankfull Flow Forms and Maintains Channel

- Recurrence Interval 1.5 Years
- Higher Flows Exceed Channel Capacity
- More Frequent Bankfull <u>more</u> important than large floods in shaping channel.

The Channel is shaped by the Bankfull Flow

Three (Real Life) Case Studies

- Institutional LID Penn State Visitor Center
- 2. Commercial Small Retail Shopping Center
- Residential High Density Townhouse, Quad, and Singles

Design "Rules of Thumb"

- Retain 2-Year Net Increase in Volume

 Net Increase: 5,765 CF
 - Available Storage before Overflow: 6,532 CF
- Infiltrate at a Maximum 5:1 Ratio Impervious:Infiltration Area
 - Impervious Area: 61,000 SF
 - Infiltration Area: 12, 425 SF

Ratio 5:1

Proposed Development 2: Commercial Shopping Center

- 3.0 Acre Site
- 1.5 acres Impervious (50%)
 - 17,000 Square Foot Building
 - 48,340 Square Feet Parking, Roads

26% for People, 74% for Cars!

Case Study

- Existing (CN = 58):
 - 3.0-acre meadow on HSG "B" soils
 - SCS Lag Time of 12 minutes
- Proposed (CN = 79):
 - Commercial Site
 - 1.5-acres pavement & building
 - 1-acre lawn
 - 0.5-acre undisturbed meadow
 - SCS Lag Time of 6 minutes

Design/Calculation Approach

- Size Infiltration System for Net increase in Volume for 2-year storm
- Mitigate Peak Rate for larger storms
- Compare to Typical Detention Basin Paradigm

Net increase in Volume for 2-year storm

Condition	Area	Weighted CN	S	l _a	Runoff Q	Runoff Volume
	(ac)		(in)	(in)	(in)	(cf)
EXISTING	3.00	58.0	7.24	1.45	0.31	3,341
Post-Development						
Pervious	1.50	60.0	6.67	1.33	0.37	2,015
Impervious	1.50	98	0.20	0.04	2.87	15,616
TOTAL POST-DEV	3.00	79.0	2.66		1.62	17,631

NET CHANGE IN RUNOFF VOLUME (CF):

14,290

Stormwater Management Techniques

- Innovative Design
 - 0.4 ac (17,500 SF) Porous Asphalt w/ Infiltration Beds (2 foot storage depth)
 - Storage Volume = 14,000 CF (0.32 ac-ft)
 - Steady-state Infiltration Rate = 2 inches/hour
 - Modeled in HEC-HMS as a Diversion
 - Infiltration Rate included in Stage-Storage-Discharge Table
- Conventional Design
 - Detention Basin instead of undisturbed meadow
 (2 foot storage depth)

- Storage Volume = 20,000 CF (0.46 ac-ft)

Hydrologic Calculations

- USDA-NRCS Cover-Complex Method (TR-55)
- US Army Corp of Engineers' Hydrologic Engineering Center – Hydrologic Modeling System (HEC-HMS), Version 2.2.2 (28 May 2003)

http://www.hec.usace.army.mil/software/hec-hms/hechms-download.html

Hydrologic Modeling System

Version: 2.2.2

Hydrologic Engineering Center

X

HEC Hydrologic Modeling System Version: 2.2.2 (28 May 2003) Build 1091

For more information contact:

Hydrologic Engineering Center 609 Second Street Davis, CA 95616 (530) 756-1104

Copyright 1995 Visix Software Inc., All Rights Reserved (Galaxy Run Time Components Only)

OK

View License Agreement

🔀 Detection Rasie

HEC

HMS

Piet

Outflow

Stage-Storage-Discharge Curves

- @ X

0.4

2-yr Storm Hydrographs (3.1"/24 hr)

2-yr Storm Peak Rates

10-yr Storm Hydrographs (4.9"/24 hr)

10-yr Storm Peak Rates

100-yr Storm Hydrographs (6.9"/24 hr)

100-yr Storm Peak Rates

Summary Results – Peak Rates

Storm Frequency (year)	Existing Runoff Rate (cfs)	Unmitigated Post-Dev. Runoff Rate (cfs)	Infiltration Bed Discharge (cfs)	Detention Basin Discharge (cfs)
2	0.43	4.58	0.43	0.42
10	2.59	9.89	2.59	2.59
25	3.52	11.75	3.40	3.48
100	5.93	16.14	5.45	5.53

Summary Results – Infiltration

Storm Frequency (year)	Existing Runoff Depth (in)	Unmitigated Post-Dev. Runoff Depth (in)	Total Infiltration (in)	Infiltration Bed Discharge (in)	Percentage of Existing Volume
2	0.30	1.26	1.01	0.25	83%
10	1.11	2.71	1.68	1.03	93%
25	1.44	3.23	1.87	1.36	94%
100	2.33	4.48	2.30	2.18	94%

Detention

Storm	Existing	Post-Dev.	Percentage	
Frequency	Runoff	Runoff Depth	of Existing	
(year)	Depth (in)	(in)	Volume	
2	0.30	1.26	420%	
10	1.11	2.71	244%	
25	1.44	3.23	224%	
100	2.33	4.48	192%	

Stormwater Management for The Village at Springbrook Farms

- Site marked by closed depressions and some sinkholes
- Proposed plan consists of:
 - Revised layout with setbacks from depressions and sinkholes
 - Distributed infiltration system, heavily vegetated

Example Drainage Area

- Existing (CN = 70.6):
 - 24 acres of Row Crops
 - Because of Closed Depressions, only 7.5 acres discharge offsite!!!
- Proposed (CN = 81.3):
 - 24 acres of townhouse development
 - To avoid collecting stormwater in existing Closed Depressions, <u>all 24 acres discharge</u> <u>offsite!!!</u>

Summary Results – Infiltration

Storm Frequency (year)	Existing Runoff Depth (in)	Unmitigated Post-Dev. Runoff Depth (in)	Total Infiltration (in)	Infiltration Bed Discharge (in)	Percentage of Existing Volume
2	0.24	1.33	1.27	0.06	27%
10	0.62	2.84	1.78	1.06	170%
25	0.74	3.28	1.91	1.37	185%
100	1.10	4.56	1.97	2.59	236%

Detention

Storm	Existing	Post-Dev.	Percentage	
Frequency	Runoff	Runoff Depth	of Existing	
(year)	Depth (in)	(in)	Volume	
2	0.24	1.33	561%	
10	0.62	2.84	458%	
25	0.74	3.28	443%	
100	1.10	4.56	415%	

TR-55 To Estimate Peak Rate Reduction Based on Storage Volume

TR-55 To Estimate Peak Rate Reduction Based on Storage Volume

CANTER STREET ST

TR-55 STORAGE VOLUME FOR DETENTION BASINS Version 2.0

Depending on what information is provided, either the required detention basin storage or peak outflow is estimated. Basin storage volume is determined from peak inflow rate, volume of storm runoff and desired outflow rate. Peak outflow rate is determined from peak inflow rate, volume of storm runoff and basin storage.

The method applies where :

Shortcut flood routing is based on average storage and routing effects.

The ratio of qo/qi does not approach unity.

Errors in basin storage volume of up to 25 percent are acceptable.

PRESS F1 FOR HELP, PgDn FOR NEXT PAGE, Esc TO RETURN TO Menu

NUM

B:\PROGRA=1\TR-55\TR55.EXE		
TR-55 STORAGE VOLUME FOR DETENTION	BASINS Version 2.00	
User ALP- >>>>> Identification Data <<<<>	Date	
Project SPRINGBROOK FARMS County LE	SANON State PA	
Subtitle PEAK RATE REDUCTION FROM PROPOSED NW DRAINAG	E CAREAS A.B.C.D>	L'ER-55 Regulte
>>>>> Basic Data <<<<<		
Drainage Area 24.0 Acres or ···· Sq.Mi.		
Rainfall-Type (LIA.II.III) II…	inoff = 2.81 inches	
Rainfall Frequency 10 years 24-Hour Rainfall	14.8 inches	
Runoff inches Runoff Curve Nur	iber 81	
Peak Inflow 56.5 cfs Peak Outflow	ere of a	
Detention Basin Storage Volume ···· inches or 3.11	D:\PROGRA=1\TR-55\TR55.EXE	ODACE HOLUNE DOD DETENTION DACING Housing () (0)
Peak Outflow: 6 cfs		Identification Data ///// Data
EacMenu FiHelp F2Print F3Load F4Save F5D0S F6Zd	Design CDINCDDOON DODNO	Tuencification pata XXXX pate
	PROJECT SKINGBROOK PHRAS	LOURCY LEBRING A R O R
	SUBCICIE PERK ANTE REDUCITO	W PROF PROPOSED WY DIGITINGE CHRENS H, B, C, D7
	· · · · · · · · · · · · · · · · · · ·	>>>> Basic Data ((((
	Rainfall-Type (I.IA.II.III)	II Sq.H1. Runoff = 3.25 inches
	Rainfall Frequency 25 year	s 24-Nour Rainfall 5.3 inches
	Runoff inches	Runoff Curve Number 81
D:\PROGRA~1\TR-55\TR55.EXE	- C X	Peak Outflow ofs
TR-55 STORAGE VOLUME FOR DETENTION	BASINS Version 2.00	une inches or 3.41 acre-feet
User ALP	Date	Peak Outflow: 8 cfs
Project SPRINGBROOK FARMS County LEB	ANON State PA	ess any key to continue PS NUM GLoad P4Save P5DOS P5Zero P7Compute P9CN
Subtitle PEAK RATE REDUCTION FROM PROPOSED NW DRAINAG	E (AREAS A,B,C,D)	
>>>>> Basic Data <<<<<		
Drainage Area 24.8 Acres or ···· Sq.Mi.	aff a diff includ	
Rainfall-Type (1,18,11,111) II ··	norr - 4.53 inches	
Rainfall Frequency 108 years 24-Hour Rainfall	6.7 inches	
Runoff inches Runoff Curve Num	ber 81	
Peak Inflow 98.1 cfs Peak Outflow	ofs	
Detention Basin Storage Volume inches or 3.41	acre-feet 📓	
Peak Outflow: 27 cfs		
EncMenu FiHelp F2Print FiLoad F4Save F5D0S F6Ze	ro E?Compute FYCN	

Summary Results – Peak Rates

Storm Frequency (year)	Existing Runoff Rate (cfs)	Unmitigated Post-Dev. Runoff Rate (cfs)	Estimated Infiltration Bed Discharge (cfs)	Typical Detention Basin Discharge (cfs)
2	10	42.7	1	10
10	14	56.5	6	14
25	17	65.2	8	17
100	27	90.1	27	27

How we Manage Stormwater on a Site-by-Site Basis affects the entire Watershed

Designing Infiltration Systems

Site Criteria

- Soil Permeability greater than 0.25 in./hr
- Minimum Bedrock Separation of 2 feet
- Infiltration device at least 3 feet above seasonally high water table

Design Criteria

- Spread It Out!
- 5:1 Impervious to Recharge Area
- Minimize excavation / maximize soil buffer
- Pre-treatment for "hot-spots"
- Construction oversight!!
- Level Bed Bottoms
- Keep it Clean E&S Control

Construction Criteria

- Protect infiltration BMPs from sediment until drainage area is completely stabilized
- Do not compact soil under infiltration areas
- Protect infiltration BMPs from sediment
- Do not compact soil

